近几年,3D打印技术不断深入发展,其与传统制造相融合,能够在无模具生产情况下,保证铸件质量、缩短生产周期和降低生产成本。
结合军工企业较多科研研制、单件样机、中小批量、多品种、打仗式生产等特点,迫切需要采用该技术解决传统模具高价、低效的问题;迫切需要通过相关知识介绍和相关案例的展示,引导企业进行相关应用。
以某厂科研和批量为例,介绍相应的方法、质量、成本、生产周期和应用情况,验证工业级3D打印、融合配套技术用于企业的科研和生产,可成为一种较理想的生产方式,对于后续探索和推广应用具有重要意义。
一直以来,存在着一些认为3D打印成本高、不适合用于实际生产的误解,在军工企业这种情况更加严重。但随着客户招标订货、交货周期需求变化,以及单件样机、小批量、多品种、打仗式生产在科研和生产中日益广泛,采用传统的先模具再生产零件的方式,从成本和生产周期方面很难满足发展需要。
从2018年8月开始,笔者所在企业采用几种工业级3D打印设备生产塑料和金属零件,完成了300余种近10000件零件的研发和生产,3D技术发挥了较好作用。
1.工业级3D打印和融合配套技术
3D打印技术已在工业造型、机械制造等诸多领域得到了广泛应用,从产品概念设计样件到功能验证零件,从外饰件到核心功能件,从单一零件到整体打印组装,从打印塑料件到直接打印金属零件。主要成型材料有ABS、ABS、PP、PC、石蜡、尼龙玻纤、橡胶、陶瓷、砂、铝基合金、铁基合金、镍基、钛合金等。
3D打印技术有选择性激光烧结(SLS)、激光选区熔化(SLM)、激光选区光固化(SLA)、粘合剂喷射(3DP)等几种主要方式,可针对不同材料和零件特征选用不同的打印方法。融合配套技术主要有硅溶胶熔模精密铸造、石膏型真空增压铸造、电磁低压铸造、砂型差压铸造等。
采用SLS技术配合硅溶胶熔模精密铸造生产铸钢、铸铁、铸钛、铸铜等合金,生产周期为10-15天,尺寸精密优于CT7,表面粗糙度Ra6.3μm;SLS技术配合石膏型真空增压铸造生产薄壁铝合金、大型铝合金铸件,优点在于造形制壳简单,生产周期为7-12天,尺寸精密优于CT7,表面粗糙度Ra5.0μm;3DP技术配合电磁低压铸造、砂型差压铸造生产复杂内腔铸件,生产周期为3-5天,尺寸精密优于CT12,表面粗糙度Ra12.5μm。
3D打印和传统铸造技术融合配套,解决了无模具快速铸造问题,降低了3D打印制造金属类零件成本。
2.3D打印技术在军用装备零部件生产方面的应用
在科研阶段,3D打印技术主要用于产品设计、设计验证、功能验证、样机模型制作、样机生产。采用不同3D打印方法快速生产塑料和金属部件,满足科研阶段不同需要。
在设计产品结构和结构评估时,产品的相对比例、颜色搭配等是否合理,往往在电脑显示中无法很好体现,通过3D打印SLA技术按照要求比例打印出较高强度的塑料(整个打印过程仅需要几个小时或1-2个工作日),再通过喷漆和烤漆等上色手段,装配各部件,最后得到可拆装的产品设计模型(如图)。
中国3D打印“大飞机”零部件
3D 打印技术对于国防、航空等重点领域高端复杂精细结构关键零部件的制造起到了很大作用,为其提供了应用的支撑平台。我国在这一领域并不落后于其他发达国家,相反,在一些高精尖的军工领域甚至还处于领先地位。
其中,2015 年 9 月 3 日纪念抗战胜利 70 周年的大阅兵上展示的国产战机中,就有一部分飞机的零部件采用了3D打印技术。
3D打印在国产大型客机C919的应用
2016 年,中国曾对外宣布一项关于国产大型客机 C919 的一个制造细节:该客机部件采用了激光成型件加工中央翼线条,其中,最大尺寸为3070mm,最大变形量则小于0.8mm,整个力学性能通过飞机厂商的测试,其材料性能、结构性能、零件取样性能、大部段强度全部满足国产大型客机 C919 的设计要求,包括疲劳性能在内的综合性能,也优于传统的锻造技术。而且,3D打印出来的零部件强度一致性为2%,优于厂商5%的技术指标要求。
银邦股份(300337):与无锡安迪利捷贸易有限公司共同出资设立飞而康快速制造科技有限责任公司,新设立公司主营业务暂定为高密度、高精度粉末冶金零件、各类新材料与复杂部件的研发、生产、销售,其中主营业务中有部分产品涉及激光快速成型技术。该技术是金属3D打印技术中的一种。
光韵达:收购成都通宇航空,切入3D军工赛道,光韵达在互动平台表示,子公司通宇航空目前订单充足,生产人员三班倒,全力保障产品的交付。较2019年相比,通宇航空在产能、设备数量上都有快速扩张,人员也从收购前的160多人增加到目前500多人。