合成生物学(synthetic biology)是一门汇集生物学、基因组学、工程学和信息学等多种学科的交叉学科,其实现的技术路径是运用系统生物学和工程学原理,以基因组和生化分子合成为基础,综合生物化学、生物物理和生物信息等技术,旨在设计、改造、重建生物分子、生物元件和生物分化过程,以构建具有生命活性的生物元件、系统以及人造细胞或生物体。 合成生物学(Synthetic Biology)是一门结合了生命科学观察分析方法和工程学设计思维的学科,使人类通过工程方法设计、改造甚至从头合成有特定功能的生物系统。
通俗来讲,合成生物学就像奶牛产奶的过程:奶牛吃进低价值的草,而产出的却是高价值的牛奶。在合成生物学中,底盘细胞相当于奶牛,各种原料相当于低价值的草料。通过基因技术编辑过的底盘细胞,添加低廉原料后经过发酵等一系列工艺产生的高价值的化学或生物原料,就相当于生产的牛奶。高价值的牛奶最终帮助企业换取到金钱,合成生物学就完成了一整套“点石成金”的闭环过程。 根据麦肯锡研究,生物制造的产品可以覆盖60%化学制造的产品,未来生物制造的方式有望对未来医药、化工、食品、能源、材料、农业等传统行业带来巨大影响。
两大基础:底盘细胞、发酵工程
①底盘细胞:底盘细胞是合成生物学的“硬件”基础,其中常用的模式微生物有酿酒酵母、大肠杆菌、枯草芽孢杆菌、谷氨酸棒杆菌等。不同的模式微生物具有特定的优缺点,因此被应用于不同产物的生产。相关技术:菌株改造、菌株选择。
②发酵工程:根据生产流程可分为上游、中游和下游三部分,上游工程主要为菌种的选育和改造,以获得生产性能良好的菌株;中游则为发酵过程控制,通过对发酵过程中各种参数的采集、分析和反馈,以达到生产最佳发酵条件;下游则是对产品的分离和纯化,采用多种技术将发酵产品从发酵液或者细胞中分离、纯化出来,在达到特定标准后制成产品。
合成生物应用场景
生命健康领域 /化学品材料和能源 /合成生物的能源应用 /农业领域 /领域
合成生物学的优势
合成生物制造是一种具有潜力的绿色生产方式,随着全球变暖及各国碳中和的提出,合成生物制造无疑成为潜在的最优解之一。
以基因合成、编辑为代表的合成生物学在过去20年间有了快速的发展,支撑产业迭代、升级。
生物铸造厂模式的出现,给合成生物学产品开发和数据积累提供了优质的研发平台。
底层技术成本指数级下降,带来下游合成生物学应用爆发。
精准发酵替代传统发酵,成本下降带来竞争优势。随着在发酵工程的发展,精准发酵逐渐成为合成生物学放大生产的主流,精准发酵通过对于发酵微生物进行基因修饰,已达到目标产物最高得率。精准发酵的优势在于1)目标产物相对可控;2)成本、能耗降低;3)污染降低。
上市公司中微生物发酵已形成产业化的企业:
1.福安药业(公司只楚药业已产业化,针对方向:医药)
2.星湖科技:(已形成产业化应用,针对方向:医药及食品)
3.蔚蓝生物:(已形成产业化,针对方向:动物保健、食品)
4.金丹科技:(已形成产业化,针对方向:可降解塑料制品)
5.国邦医药:(已产业化,针对放心:化学酶)
.........